1.1. Mệnh đề
a) Mệnh đề, mệnh đề chứa biến
– Mệnh đề là câu khẳng định đúng hoặc sai.
– Một khẳng định dúng gọi là mệnh đề đúng.
– Một khẳng sai dúng gọi là mệnh đề sai.
– Một mệnh đề không thể vừa đúng vửa sai.
– Một mệnh đề chứa biến có thể chưa một biến hoặc nhiều biến
b) Mệnh đề phủ định
Mỗi mệnh đề P có mệnh đề phủ định, kí hiệu là \(\overline P \)
Mệnh đề P và mệnh đề phủ định \(\overline P \) của nó có tính đúng sai trái ngược nhau. Nghĩa là khi P đúng thì \(\overline P \) sai, khi P sai thì \(\overline P \) đúng.
c) Mệnh đề kéo theo
Cho hai mệnh đề P và Q. Mệnh đề ” Nếu P thì Q” được gọi là mệnh đề kéo theo, kí hiệu P => Q
Mệnh đề P => Q chỉ sai khi P đúng và Q sai
* Khi mệnh đề P => Q là định lí, ta nói:
- P là giả thiết, Q là kết luận của định lí.
- P là điều kiện đủ để có Q.
- Q là điều kiện cần để có P.
d) Mệnh đề đảo. Hai mệnh đề tương đương
Mệnh đề Q => P được gọi là mệnh đề đảo của mệnh đề P => Q
Nếu cả hai mệnh đề \(P \Rightarrow Q\) và \(Q \Rightarrow P\) đều đúng ta nói P và Q là hai mệnh đề tương đương. Kí hiệu \(P \Leftrightarrow Q\) (đọc là “P tương đương Q” hoặc “P khi và chỉ khi Q”)
Khi đó, ta cũng nói P là điều kiện cần và đủ để có Q (Q là điều kiện cần và đủ để có P)
e) Mệnh đề chứa kí hiệu \(∀\), \(∃\)
Mệnh đề \(\forall x \in M,P(x)\) đúng với mọi \({x_0} \in M\), P(x) là mệnh đề đúng.
Mệnh đề \(\exists x \in M,P(x)\) đúng nếu có \({x_0} \in M\),sao cho P(x) là mệnh đề đúng.
1.2. Tập hợp
a) Tập con và hai tập hợp bằng nhau
Cho hai tập hợp A và B. Nếu mọi phân tử của A đều là phân từ của B thì ta nói tập hợp A là rập con của tập hợp B và kí hiệu \(A \subset B\) (đọc là A chứa trong B), hoặc \(B \supset A\) (đọc là B chứa A)
Nhận xét
* \(A \subset A\) và \(Ø \subset A\) với mọi tập hợp A.
* Nếu A không phải là tập con của B thì ta kí hiệu \(A \not\subset B\) (đọc là A không chứa trong B hoặc B không chứa A).
* Nếu \(A \subset B\) hoặc \(B \subset A\) thì ta nói A và B có quan hề bao hàm.
b) Một số tập con của tập hợp số thực
Sau này ta thường sử dụng các tập con của tập số thực sau đây (a và b là các số thực, a < b)
1.3. Các phép toán trên tập hợp
a) Hợp và giao của các tập hợp
Cho hai tập hợp A và B.
– Tập hợp các phần tử thuộc A hoặc thuộc B gọi là hợp của hai tập hợp A và B, kí hiệu \(A \cup B\).
\(A \cup B = {\rm{\{ }}x|x \in A\) hoặc \(x \in B{\rm{\} }}\)
– Tập hợp các phần tử thuộc cả hai tập hợp A và B gọi là giao của hai tập hợp A và B, kí hiệu \(A \cap B\).
\(A \cap B = {\rm{\{ }}x|x \in A\) và \(x \in B{\rm{\} }}\)
b) Hiệu của hai tập hợp, phần bù của tập con
Cho hai tập hợp A và B.
– Tâp hợp các phần tử thuộc A nhưng không thuộc B gọi là liệu của A và B, kí hiệu \(A\backslash B\)
\(A\backslash B = {\rm{\{ }}x|x \in A\) và \(x \notin B{\rm{\} }}\).
– Nếu A là tập con của E thì hiệu \(E\backslash A\) gọi là phân bù của A trong E, kí hiệu \({C_E}A\).