Bật tắt bảng chọn
ONTHITHPT
Toggle preferences menu
Bật tắt bảng chọn cá nhân
Chưa đăng nhập
Địa chỉ IP của bạn sẽ được hiển thị công khai nếu bạn thực hiện bất kỳ sửa đổi nào.

Toán 11 Kết nối tri thức Bài 19: Lôgarit

Từ ONTHITHPT

1.1. Khái niệm Lôgarit

Cho a là một số thực dương khác 1 và M là một số thực dương. Số thực \(\alpha \) để \(a^\alpha = M\) được gọi là lôgarit cơ số a của M và kí hiệu là \(\log_a M\).

\[\alpha  = {\log _a}M \Leftrightarrow {a^\alpha } = M.\]

 

Chú ý: Không có lôgarit của số âm và số 0. Cơ số của lôgarit phải dương và khác 1.

Tính chất lôgarit:

Với \(0 < a \ne 1, M> 0\) và \(\alpha \) là số thực tuỳ ý, ta có:

\(\begin{array} {} \log_a1 = 0;{\log _a}a = 1;\\ {a^{{{\log }_a}M}} = M;{\log _a}{a^\alpha } = \alpha . \end{array}\)

 

1.2. Tính chất của Lôgarit

a) Quy tắc tính lôgarit

Giả sử a là số thực dương khác 1, M và N là các số thực dương, \(\alpha \) là số thực tuỳ ý.

Khi đó:

\(\begin{array}{*{20}{l}} {{\log_a}\left( {MN} \right){\rm{ = }}{\log_a}M + {\rm{ }}{\log_a}N;}\\ {{\log_a}{M\over N} = {\log_a}M - {\log_a}N;}\\ {{\log_a}{M^\alpha }{\rm{ = }}\alpha {\log_a}M.} \end{array}\)

 

b) Đổi cơ số của lôgarit

Với các cơ số lôgarit a và b bất kì (0 < a \(\ne\) 1, 0 < b \(\ne\) 1) và M là số thực dương tuỳ ý. ta luôn có:

\[{\log _a}M = \frac{{{{\log }_b}M}}{{{{\log }_b}a}}.\]

 

Theo công thức đổi cơ số ta có: \({{\log_{a^\alpha}}{M }{\rm{ = }}{1\over \alpha} {\log_a}M.}\)

 

1.3. Lôgarit thập phân và Lôgarit tự nhiên

a) Lôgarit thập phân

Lôgarit cơ số 10 của một số dương M gọi là lôgarit thập phân của M, kí hiệu là log M hoặc lg M (đọc là lốc của M).

b) Số e và Lôgarit tự nhiên

Lôgarit cơ số e của một số dương M gọi là lôgarit tự nhiên của M. kí hiệu là ln M (đọc là lôgarit Nêpe của M).

Trong đó, \[e = \mathop {\lim }\limits_{x \to  + \infty } {\left( {1 + \frac{1}{x}} \right)^x} \approx 2,7183.\]

c) Tính Lôgarit bằng máy tính cầm tay