Bật tắt bảng chọn
ONTHITHPT
Toggle preferences menu
Bật tắt bảng chọn cá nhân
Chưa đăng nhập
Địa chỉ IP của bạn sẽ được hiển thị công khai nếu bạn thực hiện bất kỳ sửa đổi nào.

Toán 11 Chân trời sáng tạo Bài 3: Hàm số mũ

Từ ONTHITHPT

1.1. Hàm số mũ

Cho a là số thực dương khác 1.

Hàm số \(y = a^x\) được gọi là hàm số mũ cơ số a.

Đồ thị của hàm số mũ

(1) Tập xác định: \(D=\mathbb{R}\).

      Tập giá trị: \(T = (0;+\infty )\).

      Hàm số liên tục trên \(\mathbb{R}\).

(2) Sự biến thiên:

Nếu \(a>1\) thì hàm số đồng biến trên \(\mathbb{R}\) và

\[\begin{array}{l}
\mathop {\lim }\limits_{x \to  + \infty } y = \mathop {\lim }\limits_{x \to  + \infty } {a^x} =  + \infty ,\\
\mathop {\lim }\limits_{x \to  - \infty } y = \mathop {\lim }\limits_{x \to  - \infty } {a^x} = 0.
\end{array}\]

Nếu \(0 < a < 1\) thì hàm số nghịch biến trên \(\mathbb{R}\) và 

\[\begin{array}{l}
\mathop {\lim }\limits_{x \to  + \infty } y = \mathop {\lim }\limits_{x \to  + \infty } {a^x} =  0 ,\\
\mathop {\lim }\limits_{x \to  - \infty } y = \mathop {\lim }\limits_{x \to  - \infty } {a^x} = + \infty.
\end{array}\]

(3) Đồ thị: cắt trục tung tại điểm \((0;1)\); đi qua điểm \((1;a)\) và luôn nằm phía trên trục hoành.

 

1.2. Hàm số lôgarit

Cho a là số thực dương khác 1.

Hàm số \(y =\log_a x\) được gọi là hàm số lôgarit cơ số a.

Đồ thị của hàm số lôgarit

 

(1) Tập xác định: \(D=(0;+\infty )\).

      Tập giá trị: \(T = \mathbb{R}\).

      Hàm số liên tục trên \((0;+\infty )\).

(2) Sự biến thiên:

Nếu \(a>1\) thì hàm số đồng biến trên \((0;+\infty )\) và

\[\begin{array}{l}
\mathop {\lim }\limits_{x \to  + \infty } y = \mathop {\lim }\limits_{x \to  + \infty } {\log _a}x =  + \infty ,\\
\mathop {\lim }\limits_{x \to {0^ + }} y = \mathop {\lim }\limits_{x \to {0^ + }} {\log _a}x =  - \infty .
\end{array}\]

Nếu \(0 < a < 1\) thì hàm số nghịch biến trên \((0;+\infty )\) và 

\[\begin{array}{l}
\mathop {\lim }\limits_{x \to  + \infty } y = \mathop {\lim }\limits_{x \to  + \infty } {\log _a}x =  - \infty ,\\
\mathop {\lim }\limits_{x \to {0^ + }} y = \mathop {\lim }\limits_{x \to {0^ + }} {\log _a}x =  + \infty .
\end{array}\]

(3) Đồ thị: cắt trục tung tại điểm \((1;0)\); đi qua điểm \((a;1)\) và luôn nằm bên phải trục tung.