Bật tắt bảng chọn
ONTHITHPT
Toggle preferences menu
Bật tắt bảng chọn cá nhân
Chưa đăng nhập
Địa chỉ IP của bạn sẽ được hiển thị công khai nếu bạn thực hiện bất kỳ sửa đổi nào.

Toán 11 Chân trời sáng tạo Bài 2: Cấp số cộng

Từ ONTHITHPT

1.1. Cấp số cộng

 Cấp số cộng là một dãy số (hữu hạn hay vô hạn), mà trong đó kể từ số hạng thứ hai, mỗi số hạng đều bằng tổng số hạng đứng ngay trước nó với một số d không đổi, nghĩa là:

 un+1 =u+ d với \(n\in N*\).

 Số d được gọi là công sai của cấp số cộng.

 

Nhận xét: Nếu (\(u_n\)) là cấp số cộng thì kể từ số hạng thứ hai, mỗi số hạng (trừ số hạng cuối đối với cấp số cộng hữu hạn) đều là trung binh cộng của hai số hạng đứng kể nó trong dãy, tức là:

\[{u_k} = \frac{{{u_{k - 1}} + {u_{k + 1}}}}{2}, k\ge 2.\]

1.2. Số hạng tổng quát của cấp số cộng

Định lý 1:

 Nếu cấp số cộng (un) có số hạng đầu u1 và công sai d thì số hạng tổng quát un của nó được xác định theo công thức

un = u+ (n - 1)d, n ≥ 2.

 

1.3. Tổng của n số hạng đầu tiên của cấp số cộng

Định lý 2:

 Giả sử (un ) là một cấp số cộng với công sai d. Đặt S= u1+ u+...+ un. Khi đó

 \(S_n = {n(u_1 + u_n)\over 2}\) 

hay \(S_n = {n[2u_1 + (n - 1)d]\over 2}\).