Bật tắt bảng chọn
ONTHITHPT
Toggle preferences menu
Bật tắt bảng chọn cá nhân
Chưa đăng nhập
Địa chỉ IP của bạn sẽ được hiển thị công khai nếu bạn thực hiện bất kỳ sửa đổi nào.

Toán 11 Cánh Diều Bài 2: Các phép biến đổi lượng giác

Từ ONTHITHPT

1.1. Công thức cộng

Trong trường hợp tổng quát, với các góc lượng giác a, b ta có các công thức sau

\(\begin{array}{l}
\sin (a + b) = \sin a\cos b + \cos a\sin b\\
\sin (a - b) = \sin a\cos b - \cos a\sin b\\
\cos (a + b) = \cos a\cos b - \sin a\sin b\\
\cos (a - b) = \cos a\cos b + \sin a\sin b\\
\tan (a + b) = \frac{{\tan a + \tan b}}{{1 - \tan a\tan b}}\\
\tan (a - b) = \frac{{\tan a - \tan b}}{{1 + \tan a\tan b}}
\end{array}\)

1.2. Công thức nhân đôi

Một cách tổng quát, ta có các công thức sau:

\(\)\(\begin{array}{l}
\sin 2a = 2\sin a\cos a\\
\cos 2a = {\cos ^2}a - {\sin ^2}a\\
\tan 2a = \frac{{2\tan a}}{{1 - {{\tan }^2}a}}
\end{array}\)

- Nhận xét:

\(\cos 2a = {\cos ^2}a - {\sin ^2}a = 2{\cos ^2}a - 1 = 1 - 2{\sin ^2}a\).

 

\({\cos ^2}a = \frac{{1 + \cos 2a}}{2};{\sin ^2}a = \frac{{1 - \cos 2a}}{2}\).  (Thường gọi là công thức hạ bậc)

1.3. Công thức biến đổi tích thành tổng

Trong trường hợp tổng quát, với các góc lượng giác a, b ta có các công thức sau:

\(\begin{array}{l}
\cos a\cos b = \frac{1}{2}[\cos (a + b) + \cos (a - b)]\\
\sin a\sin b = \frac{{ - 1}}{2}[\cos (a + b) - \cos (a - b)]\\
\sin a\cos b = \frac{1}{2}[\sin (a + b) + \sin (a - b)]
\end{array}\)

1.4. Công thức biến đổi tổng thành tích

Trong trường hợp tổng quát, ta có các công thức sau:

\(\begin{array}{l}
\cos u + \cos v = 2\cos \frac{{u + v}}{2}\cos \frac{{u - v}}{2}\\
\cos u - \cos v =  - 2\sin \frac{{u + v}}{2}\sin \frac{{u - v}}{2}\\
\sin u + \sin v = 2\sin \frac{{u + v}}{2}\cos \frac{{u - v}}{2}\\
\sin u - \sin v = 2\cos \frac{{u + v}}{2}\sin \frac{{u - v}}{2}
\end{array}\)