Bật tắt bảng chọn
ONTHITHPT
Toggle preferences menu
Bật tắt bảng chọn cá nhân
Chưa đăng nhập
Địa chỉ IP của bạn sẽ được hiển thị công khai nếu bạn thực hiện bất kỳ sửa đổi nào.

Toán 10 Kết nối tri thức Bài 16: Hàm số bậc hai

Từ ONTHITHPT

1.1. Khái niệm hàm số bậc hai

Hàm số bậc hai là hàm số cho bởi công thức

\(y = a{x^2} + bx + c\)

trong đó x là biến số, a, b, c là các hằng số và \(a \ne 0\).

Tập xác định của hàm số bậc hai là R.

Nhận xét

Hàm số \(y = a{x^2}(a \ne 0)\) đã học ở lớp 9 là một trường hợp đặc biệt của hàm số bậc hai với a = c = 0.

Ví dụ: Xét hàm số bậc hai y = -2x2 + 10x. Thay dấu "?" bằng các số thích hợp để hoàn thành bảng giá trị sau của hàm số.

Giải

Thay các giá trị của x vào công thức hàm số, ta được:

1.2. Đồ thị của hàm số bậc hai

Gọi (P0) là Parabol y = ax2. nếu ta "dịch chuyển" (P0) theo vectơ \(\overrightarrow {OI} \) thì ta sẽ thu được đồ thị (P) của hàm số y = ax2 + bx + c có dạng như hình sau:

Nhận xét: Đồ thị hàm số y = ax2 + bx + c  \(\left( {a \ne 0} \right)\) là một parabol.

+ Đồ thị hàm số y = ax2 + bx + c  \(\left( {a \ne 0} \right)\) là một đường parabol có đỉnh là điểm \(I\left( { - \frac{b}{{2{\rm{a}}}}; - \frac{\Delta }{{4{\rm{a}}}}} \right)\) có trục đối xứng là đường thẳng \({x =  - \frac{b}{{2{\rm{a}}}}}\). Parabol này quay bề lõm lên trên nếu a > 0, xuống dưới nếu a < 0.

+ Để vẽ đường parabol y = ax2 + bx + c ta tiến hành theo các bước sau:

1. Xác định toạ độ đính \(I\left( { - \frac{b}{{2{\rm{a}}}}; - \frac{\Delta }{{4{\rm{a}}}}} \right)\);

2. Vẽ trục đối xứng \({x =  - \frac{b}{{2{\rm{a}}}}}\);

3. Xác định toạ độ các giao điểm của parabol với trục tung, trục hoành (nếu có) và một vài điểm đặc biệt trên parabol;

4. Vẽ parabol.

Ví dụ: Vẽ parabol y = -2x2 - 2x + 4.

b) Từ đồ thị, hãy tìm khoảng đồng biến, nghịch biến và giá trị lớn nhất của hàm số y = -2x2 - 2x + 4..

Giải

a) Ta có a = -2 < 0 nên parabol quay bề lõm xuống dưới. Đỉnh \(I\left( { - \frac{1}{2};\frac{9}{2}} \right)\) Trục đối xứng \({x =  - \frac{1}{2}}\). Giao điểm của đồ thị với trục Oy là A(0: 4). Parabol cắt trục hoành tại hai điểm có hoành độ là nghiệm của phương trình y = -2x2 - 2x + 4, tức là x = 1 và x = -2.

Để vẽ đồ thị chinh xác hơn, ta có thể lấy thêm điểm đối xửng với A qua trục đối xứng \({x =  - \frac{1}{2}}\) là \(B\left( { - 1;4} \right)\).

b)  Từ đồ thị ta thầy:

+ Hàm số y = -2x2 - 2x + 4 đồng biến trên \(\left( { - \infty ; - \frac{1}{2}} \right)\) nghịch biến trên \(\left( { - \frac{1}{2}; + \infty } \right)\);

+ Giá trị lớn nhất của hàm số là \(y = \frac{9}{2}\), khi \(x =  - \frac{1}{2}\).