Bật tắt bảng chọn
ONTHITHPT
Toggle preferences menu
Bật tắt bảng chọn cá nhân
Chưa đăng nhập
Địa chỉ IP của bạn sẽ được hiển thị công khai nếu bạn thực hiện bất kỳ sửa đổi nào.

Toán 10 Chân trời sáng tạo Bài tập cuối chương 4

Từ ONTHITHPT

1.1. Giá trị lượng giác của góc từ 0˚ đến 180˚

a) Giá trị lượng giác

+) Với mỗi góc \(\alpha ({0^o} \le \alpha  \le {180^o})\) có duy nhất điểm \(M({x_0};{y_0})\) trên nửa đường tròn đơn vị để \(\widehat {xOM} = \alpha .\) Khi đó:

\(\sin \alpha  = {y_0}\) là tung độ của M

\(\cos \alpha  = {x_0}\) là hoành độ của M

\(\tan \alpha  = \frac{{\sin \alpha }}{{\cos \alpha }} = \frac{{{y_0}}}{{{x_0}}}(\alpha  \ne {90^o})\)

\(\cot \alpha  = \frac{{\cos \alpha }}{{\sin \alpha }} = \frac{{{x_0}}}{{{y_0}}}(\alpha  \ne {0^o},\alpha  \ne {180^o})\)

Chú ý:

a) Nếu \(\alpha\) là góc nhọn thì các giá trị lượng giác của \(\alpha\) đều dương

Nếu ơ là góc tù thì sin\(\alpha\) > 0, cos\(\alpha\) < 0, tan\(\alpha\) < 0, cot\(\alpha\) < 0.

b) tan\(\alpha\) chỉ xác định khi \(\alpha  \ne {90^0}\).

cot\(\alpha\) chỉ xác định khi \(\alpha  \ne {0^0}\) và \(\alpha  \ne {180^0}\).

b) Quan hệ giữa các giá trị lượng giác của hai góc bù nhau

Hai góc bù nhau, \(\alpha \) và \({180^o} - \alpha \):

\(\begin{array}{l}\sin \left( {{{180}^o} - \alpha } \right) = \sin \alpha \\\cos \left( {{{180}^o} - \alpha } \right) =  - \cos \alpha \\\tan \left( {{{180}^o} - \alpha } \right) =  - \tan \alpha (\alpha  \ne {90^o})\\\cot \left( {{{180}^o} - \alpha } \right) =  - \cot \alpha ({0^o} < \alpha  < {180^o})\end{array}\)

Hai góc phụ nhau, \(\alpha \) và \({90^o} - \alpha \):

\(\begin{array}{l}\sin \left( {{{90}^o} - \alpha } \right) = \cos \alpha \\\cos \left( {{{90}^o} - \alpha } \right) = \sin \alpha \\\tan \left( {{{90}^o} - \alpha } \right) = \cot \alpha (\alpha  \ne {90^o},{0^o} < \alpha  < {180^o})\\\cot \left( {{{90}^o} - \alpha } \right) = \tan \alpha (\alpha  \ne {90^o},{0^o} < \alpha  < {180^o})\end{array}\)

c) Giá trị lượng giác của một số góc đặc biệt

Chú ý: Trong bảng, kí hiệu "||" để chỉ giá trị lượng giác không xác định.

d) Sử dụng máy tính cầm tay để tính giá trị lượng giác của một góc

+ Tính các giá trị lượng giác của góc

Bước 1: Cài đặt đơn vị đo góc (độ hoặc radian)

Bước 2: Vào chế độ tính toán

Chú ý: Để tính \(\cot \alpha \) ta tính \(\frac{1}{{\tan \alpha }}\).

+ Xác định số đo của góc khi biết giá trị lượng giác của góc đó

Để tìm \(\alpha \) khi biết \(\cot \alpha \) ta tính \(\tan \alpha  = \frac{1}{{\cot \alpha }}\) rồi tính \(\alpha \) sau.

1.2. Định lí cosin và định lí sin

a) Định lí cosin trong tam giác

Trong tam giác ABC với BC = a, CA = b, AB = c, ta có:

\(\begin{array}{l}{a^2} = {b^2} + {c^2} - 2bc\cos A\\{b^2} = {c^2} + {a^2} - 2ca\cos B\\{c^2} = {a^2} + {b^2} - 2ab\cos C\end{array}\) 

Hệ quả

\(\cos A = \frac{{{b^2} + {c^2} - {a^2}}}{{2bc}};\cos B = \frac{{{a^2} + {c^2} - {b^2}}}{{2ac}};\cos C = \frac{{{a^2} + {b^2} - {c^2}}}{{2ab}}\)

b) Định lí sin trong tam giác

Trong tam giác ABC với BC = a, CA = b, AB = c, ta có:

\(\frac{a}{{\sin A}} = \frac{b}{{\sin B}} = \frac{c}{{\sin C}} = 2R.\)

(R là bán kính đường tròn ngoại tiếp tam giác ABC)

Hệ quả

\(a = 2R.\sin A;\quad b = 2R\sin B;\quad c = 2R\sin C\)

\(\sin A = \frac{a}{{2R}};\quad \sin B = \frac{b}{{2R}};\quad \sin C = \frac{c}{{2R}}.\)

c) Các công thức tính diện tích tam giác

1) \(S = \frac{1}{2}a{h_a} = \frac{1}{2}b{h_b} = \frac{1}{2}c{h_c}\)

2) \(S = \frac{1}{2}bc\sin A = \frac{1}{2}ca\sin B = \frac{1}{2}ab\sin C\)

3) \(S = \frac{{abc}}{{4R}}\)

4) \(S = pr = \frac{{(a + b + c).r}}{2}\)

5) \(S = \sqrt {p(p - a)(p - b)(p - c)} \) (Công thức Heron)