Bật tắt bảng chọn
ONTHITHPT
Toggle preferences menu
Bật tắt bảng chọn cá nhân
Chưa đăng nhập
Địa chỉ IP của bạn sẽ được hiển thị công khai nếu bạn thực hiện bất kỳ sửa đổi nào.

Toán 10 Chân trời sáng tạo Bài tập cuối chương 3

Từ ONTHITHPT

1.1. Hàm số và đồ thị

a) Hàm số. Tập xác định và tập giá trị của hàm số

+) Định nghĩa:

Giả sử x và y là hai đại lượng biến thiên, \(x \in D\)

Nếu với mỗi \(x \in D\), ta xác định được y duy nhất (\(y \in \mathbb{R}\)) thì ta có một hàm số.

+) Tên gọi: x là biến số, y là hàm số của x, D là tập xác định

\(T = \left\{ {y|x \in D} \right\}\) là tập giá trị của hàm số.

+) Ta thường kí hiệu \(f(x)\) là giá trị y tương ứng với x, nên hàm số thường viết là \(y = f(x)\)

Chú ý

+ Hàm số cho bởi công thức mà không chỉ rõ tập xác định thì

TXĐ của hàm số \(y = f(x)\) là tập hợp tất cả các \(x \in \mathbb{R}\) sao cho \(f(x)\) có nghĩa.

+ Một hàm số có thể được cho bởi hay nhiều công thức.

b) Đồ thị hàm số

Cho hàm số y = f(x) có tập xác định D

Trên mặt phẳng tọa độ Oxy, đồ thị (C) của hàm số là tập hợp tất cả các điểm M(x; y) với \({x \in D}\) và y = f(x).

Chú ý: Điểm \(M({x_M};{y_M})\) thuộc đồ thị hàm số \(y = f(x)\) khi và chỉ khi \({{x_M} \in D}\) và \({{y_M} = f({x_M})}\).

 

c) Hàm số đồng biến, hàm số nghịch biến

Với hàm số \(y = f(x)\) xác định trên khoảng \((a;b)\), ta nói:

- Hàm số đồng biến trên khoảng \((a;b)\) nếu: \(\forall {x_1},{x_2} \in (a;b),{x_1} < {x_2} \Rightarrow f({x_1}) < f({x_2})\)

- Hàm số nghịch biến trên khoảng \((a;b)\) nếu: \(\forall {x_1},{x_2} \in (a;b),{x_1} < {x_2} \Rightarrow f({x_1}) > f({x_2})\)

Nhận xét:

Khi hàm số đồng biến (tăng) trên khoảng (a; b) thì đồ thị của nó có dạng đi lên từ trái sang phải. Ngược lại, khi hàm số nghịoh biển (giảm) trên khoảng (a; b) thì đồ thị của nó có dạng đi xuống từ trái sang phải.

1.2. Hàm số bậc hai

a) Hàm số bậc hai

+ Định nghĩa:

Hàm số bậc hai biến x là hàm số cho bởi công thức dạng \(y = f(x) = a{x^2} + bx + c\) với \(a,b,c \in \mathbb{R};a \ne 0.\)

+ Tập xác định: \(\mathbb{R}\)

b) Đồ thị hàm số bậc hai

+) Đồ thị hàm số bậc hai \(y = f(x) = a{x^2} + bx + c\) \((a \ne 0)\) là một parabol (P):

- Đỉnh \(S\left( { - \frac{b}{{2a}}; - \frac{\Delta }{{4a}}} \right)\)

- Trục đối xứng: đường thẳng \(x =  - \frac{b}{{2a}}\)

- Bề lõm: quay lên trên nếu \(a > 0\), quay xuống dưới nếu \(a < 0\)

- Cắt Oy tại điểm \((0;c)\)

Chú ý: Nếu PT \(a{x^2} + bx + c = 0\) có hai nghiệm \({x_1},{x_2}\) thì đồ thị hàm số \(y = a{x^2} + bx + c\) cắt trục hoành tại 2 điểm có hoành độ lần lượt là 2 nghiệm này.

+) Vẽ đồ thị

1) Xác định đỉnh \(S\left( { - \frac{b}{{2a}}; - \frac{\Delta }{{4a}}} \right)\)

2) Vẽ trục đối xứng d: \(x =  - \frac{b}{{2a}}\)

3) Tìm tọa độ giao điểm của đồ thị với trục tung (A(0;c)), trục hoành (nếu có).

Xác định \(B\left( {\frac{{ - b}}{a};c} \right)\) (là điểm đối xứng với A qua d)

4) Vẽ parabol đỉnh S, trục đối xứng d, đi qua các điểm tìm được.

c) Sự biến thiên của hàm số bậc hai

+) Bảng biến thiên

+) Kết luận:

 

\(a > 0\)

\(a < 0\)

Trên khoảng \(\left( { - \infty ;\frac{{ - b}}{{2a}}} \right)\)

Hàm số nghịch biến

Hàm số đồng biến

Trên khoảng \(\left( {\frac{{ - b}}{{2a}}; + \infty } \right)\)

Hàm số đồng biến

Hàm số nghịch biến

GTLN hoặc GTNN

Đạt GTNN bằng \(\frac{{ - \Delta }}{{4a}}\) tại \(x = \frac{{ - b}}{{2a}}\)

Đạt GTLN bằng \(\frac{{ - \Delta }}{{4a}}\) tại \(x = \frac{{ - b}}{{2a}}\)

Tập giá trị

\(T = \left[ {\left. {\frac{{ - \Delta }}{{4a}}; + \infty } \right)} \right.\)

\(T = \left( {\left. { - \infty ;\frac{{ - \Delta }}{{4a}}} \right]} \right.\)

d) Ứng dụng của hàm số bậc hai

+) Tầm bay cao và tầm bay xa

Chọn điểm \((0;{y_0})\) là điểm xuất phát thì phương trình quỹ đạo của cầu lông khi rời mặt vợt là:

\(y = \frac{{ - g.{x^2}}}{{2.{v_0}^2.{{\cos }^2}\alpha }} + \tan \alpha .x + {y_0}\)

Trong đó:

\(g\) là giá tốc trọng trường ( \( \approx 9,8\;m/{s^2}\))

\(\alpha \) là góc phát cầu (so với phương ngang của mặt đất)

\({v_0}\) là vận tốc ban đầu của cầu

\({y_0}\) là khoảng cách từ vị trí phát cầu đến mặt đất

Quỹ đạo chuyển động của cầu lông là một parabol.

 

 - Vị trí cao nhất tại đỉnh parabol, gọi là tầm bay cao;

- Khoảng cách từ nơi đứng phát cầu đến điểm cham đất, gọi là tầm bay xa.

+) Bài toán ứng dụng

Khi cầu bay tới vị trí lưới phân cách, nếu nó ở bên trên mặt lưới và điểm rơi không ra khỏi đường biến phía sân đối phương thì lần phát cầu được xem là hợp lệ.