Bật tắt bảng chọn
ONTHITHPT
Toggle preferences menu
Bật tắt bảng chọn cá nhân
Chưa đăng nhập
Địa chỉ IP của bạn sẽ được hiển thị công khai nếu bạn thực hiện bất kỳ sửa đổi nào.

Toán 10 Cánh Diều Bài 4: Nhị thức Newton

Từ ONTHITHPT

Ta có hai công thức khai triển sau:

\(\begin{array}{l}
\begin{array}{*{20}{l}}
{{{\left( {a + b} \right)}^4} = {C_4}^0{a^4} + {C_4}^1{a^3}b + {C_4}^2{a^2}{b^2} + {C_4}^3a{b^3} + {C_4}^4{b^4}}\\
{\;\;\;\;\;\;\;\;\;\;\;\;\; = {a^4} + 4{a^3}b + 6{a^2}{b^2} + 4a{b^3} + {b^4}.}
\end{array}\\
\begin{array}{*{20}{l}}
{{{\left( {a + b} \right)}^5} = {C_4}^0{a^5} + {C_5}^1{a^4}b + {C_5}^2{a^3}{b^2} + {C_5}^3{a^2}{b^3} + {C_5}^4a{b^4} + {C_5}^5{b^5}}\\
{\;\;\;\;\;\;\;\;\;\;\;\;\; = {a^5} + 5{a^4}b + 10{a^3}{b^2} + 10{a^2}{b^3} + 5a{b^4} + {b^5}.}
\end{array}
\end{array}\)

Những công thức khai triển nói trên là công thức nhị thức Newton \({\left( {a + b} \right)^n}\) ứng với n=4; n=5.

Bằng cách như thế, ta có thể khai triển được \({\left( {a + b} \right)^n}\) với n là số nguyên dương lớn hơn 5.

Ví dụ: Khai triển các biểu thức sau:

\(\begin{array}{l}
a){\left( {x - 2y} \right)^4};\\
b){\left( {3x - y} \right)^5}.
\end{array}\)

Giải

a) Ta có:

\(\begin{array}{l}
{\left( {x - 2y} \right)^4} = {\left[ {x + \left( { - 2y} \right)} \right]^4} = {x^4} + 4{x^3}\left( { - 2y} \right) + 6{x^2}{\left( { - 2y} \right)^2} + 4x{\left( { - 2y} \right)^3} + {\left( { - 2y} \right)^4}\\
 = {x^4} - 8{x^3}y + 24{x^2}{y^2} - 32x{y^3} + 16{y^4}
\end{array}\)

b) Ta có: 

\(\begin{array}{l}
{\left( {3x - y} \right)^5} = {\left[ {3x + \left( { - y} \right)} \right]^5}\\
 = {\left( {3x} \right)^5} + 5{\left( {3x} \right)^4}\left( { - y} \right) + 10{\left( {3x} \right)^3}{\left( { - y} \right)^2} + 10{\left( {3x} \right)^2}{\left( { - y} \right)^3} + 5\left( {3x} \right){\left( { - y} \right)^4} + {\left( { - y} \right)^5}\\
 = 243{x^5} - 405{x^4}{y^3} + 270{x^3}{y^2} - 90{x^2}{y^3} + 15x{y^4} - {y^5}.
\end{array}\)