Bật tắt bảng chọn
ONTHITHPT
Toggle preferences menu
Bật tắt bảng chọn cá nhân
Chưa đăng nhập
Địa chỉ IP của bạn sẽ được hiển thị công khai nếu bạn thực hiện bất kỳ sửa đổi nào.

Toán 12 Bài 1: Lũy thừa

Từ ONTHITHPT

2.1. Khái niệm lũy thừa

- Cho \(n\) là một số nguyên dương.

+ Với \(a\) là số thực tùy ý, lũy thừa bậc \(n\) của \(a\) là tích của \(n\) thừa số \(a\): \({a^n} = \underbrace {a.a......a}_n\)

+ Với \(a\ne0\): 

  • \(a^0=1\)
  • \(a^{-n}=\frac{1}{a^n}\)

- Trong biểu thức \(a^m\), ta gọi \(a\) là cơ số, số nguyên \(m\) là số mũ.

Chú ý: 

- \(0^0\) và \(0^n\) không có nghĩa.

- Lũy thừa với số mũ nguyên có các tihs chất tương tự của lũy thừa với số mũ nguyên dương.


b) Lũy thừa với số mũ hữu tỉ

- Cho \(a\) là số thực dương và số hữu tỉ \(r=\frac{m}{n}\) trong đó \(m\in\mathbb{Z},n\in\mathbb{N},n\geq 2.\) Lũy thừa với số mũ \(r\) là số \(a^r\) xác đinh bởi: \({a^r} = {a^{\frac{m}{n}}} = \sqrt[n]{{{a^m}}}\).


c) Lũy thừa với số mũ thực

- Cho \(a\) là một số dương, \(\alpha\) là một số vô tỉ:

- Ta gọi giới hạn của dãy số \(\left( {{a^{{r_n}}}} \right)\) là lũy thừa của \(a\) với số mũ \(\alpha\), kí hiệu là \(a^{\alpha}.\)

\({a^\alpha } = \mathop {\lim }\limits_{n \to + \infty } {a^{{r_n}}}\) với \(a = \mathop {\lim }\limits_{n \to + \infty } {r_n}\).

2.2. Các tính chất quan trọng của lũy thừa

- Với số thực \(a>0\) ta có các tính chất sau:

+ \(a^x.a^y=a^{x+y} \ \ \ x, y\in \mathbb{R}\)

+ \(\frac{a^x}{a^y}=a^{x-y} \ \ \ x, y \in \mathbb{R}\)

+ \((a^x)^y=a^{xy} \ \ \ x,y\in R\)

+ \(\sqrt[x]{a^y}=a^{\frac{y}{x}} \ \ \ x\in N, x\geq 2, y\in R\)

+ \((a.b)^x=a^x.b^x\)

+ \(\left ( \frac{a}{b} \right )^y=\frac{a^y}{b^y}\)

2.3. So sánh hai lũy thừa

- Cho số thực \(a\):

+ Nếu \(a>1\) thì \(a^x > a^y\Leftrightarrow x>y\).

+ Nếu \(0 < a < 1\) thì \(a^x > a^y\Leftrightarrow x < y\).