Kho tàng tài liệu học tập phong phú.

Toán 11 Chân trời sáng tạo Bài 1: Giới hạn của dãy số

1.1. Giới hạn hữu hạn của dãy số

a) Giới hạn 0 của dãy số

 Ta nói dãy số (\(u_n\)) có giới hạn là 0 khi n dần tới dương vô cực, nếu \(|u_n|\) có thể nhỏ hơn một số dương bé tuỳ ý, kể từ một số hạng nào đó trở đi.

 Kí hiệu: \(\mathop {\lim }\limits_{n \to  + \infty } {u_n} = 0\) hay \(u_n \to 0\) khi \(n \to +\infty\). Ta còn viết là \(\mathop {\lim } {u_n} = 0\).

 

  Ta thừa nhận một số giới hạn cơ bản dưới đây. Chúng thường được sử dụng để tìm giới hạn của nhiều dãy số khác.

+ \(\mathop {\lim }\limits_{n \to  + \infty }  \frac{1}{{{n^k}}} = 0\) với \(k \in \mathbb{N}^*\);

+ \(\mathop {\lim }\limits_{n \to  + \infty } {q^n} = 0\) với q là số thực thỏa mãn \(\left| q \right| < 1\);

 

b) Giới hạn hữu hạn của dãy số

 Ta nói dãy số (\(u_n\))  giới hạn hữu hạn là a khi n dần tới dương vô cực, nếu \(\mathop {\lim }\limits_{n \to  + \infty } ({u_n -a}) =0\).

 Kí hiệu: \(\mathop {\lim }\limits_{n \to  + \infty } {u_n} = a\) hay \(u_n \to a\) khi \(n \to +\infty\).

 

Chú ý: \(\mathop {\lim }\limits_{n \to  + \infty } C = C\) với C là hằng số.

 

1.2. Các phép toán về giới hạn hữu hạn của dãy số

 – Nếu \(\mathop {\lim }\limits_{n \to + \infty } ​ {u_n} = a, \mathop {\lim }\limits_{n\to + \infty } ​ {v_n} = b\) và \(c\) là hằng số thì

\(\mathop {\lim }\limits_{n \to + \infty } ({u_n} + {v_n}) = a + b\)        

\(\mathop {\lim }\limits_{n \to + \infty } ({u_n} – {v_n}) = a – b\)

\(\mathop {\lim }\limits_{n \to + \infty } ({c}.{u_n}) = c.a\) 

\(\mathop {\lim }\limits_{n \to + \infty } ({u_n}.{v_n}) = a.b\)                    

\(\mathop {\lim }\limits_{n \to + \infty } \frac{{{u_n}}}{{{v_n}}} = \frac{a}{b}{\rm{ (}}b \ne 0)\)

 – Nếu \({u_n} \ge 0 \text{ với mọi } n\in N*\) và \(\mathop {\lim }\limits_{n \to + \infty } ​ {u_n} = a\) thì

\(a\ge 0\) và \(\mathop {\lim }\limits_{n \to + \infty } \sqrt {{u_n}} = \sqrt a \)

 

1.3. Tổng của cấp số nhân lùi vô hạn

– Cấp số nhân vô hạn \(({u_n})\) có công bội q thỏa \(\left| q \right| < 1\) được gọi là cấp số nhân lùi vô hạn.

– Cấp số nhân lùi vô hạn này có tổng là

\(S=  {u_1} + {u_2} + … + {u_n} + … = \frac{{{u_1}}}{{1 – q}}\).

 

1.4. Giới hạn vô cực

 – Dãy số (\(u_n\)) được gọi là có giới hạn là \(+\infty\) khi \(n \to +\infty\), nếu \(u_n\) có thể lớn hơn một số dương bất kỳ, kể từ một số hạng nào đó trở đi.

 Kí hiệu: \(\mathop {\lim }\limits_{n \to + \infty } {u_n} = +\infty\) hay \(u_n \to +\infty\) khi \(n \to +\infty\).

 – Dãy số (\(u_n\)) được gọi là giới hạn là \(-\infty\) khi \(n \to +\infty\), nếu \(\mathop {\lim }\limits_{n \to + \infty } ({-u_n}) = +\infty\) .

 Kí hiệu: \(\mathop {\lim }\limits_{n \to + \infty } {u_n} = -\infty\) hay \(u_n \to -\infty\) khi \(n \to +\infty\).

 

Chú ý: Ta có các kết quả sau:

\(\mathop {\lim }\limits_{n \to + \infty } {u_n} = +\infty\) khi và chỉ khi \(\mathop {\lim }\limits_{n \to + \infty } ({-u_n}) = -\infty\)

+ Nếu \(\mathop {\lim }\limits_{n \to + \infty } {u_n} = +\infty\) hoặc \(\mathop {\lim }\limits_{n \to + \infty } {u_n} = -\infty\) thì \(\mathop {\lim }\limits_{n \to + \infty } {1\over u_n} = 0\)

+ Nếu \(\mathop {\lim }\limits_{n \to + \infty } {u_n} = 0\) và \(u_n>0\) với mọi n thì \(\mathop {\lim }\limits_{n \to + \infty } {1\over u_n} = + \infty\)

Nhận xét:

+ \(\mathop {\lim }\limits_{n \to  + \infty }  {n^k} = + \infty\) với \(k \in \mathbb{N}^*\);

+ \(\mathop {\lim }\limits_{n \to  + \infty } {q^n} = + \infty\) nếu \(q > 1\).