Kho tàng tài liệu học tập phong phú.

Toán 10 Cánh Diều Bài 5: Hai dạng phương trình quy về phương trình bậc hai

1.1. Phương trình dạng \(\sqrt{ax^{2}+bx+c}=\sqrt{dx^{2}+ex+f}\)

Để giải phương trình \(\sqrt{ax^{2}+bx+c}=\sqrt{dx^{2}+ex+f}\) ta làm như sau:

Bước 1: Bình phương hai về của phương trình để được phương trình \(a{x^2} + bx + c = d{x^2} + ex + f\)

Bước 2: Giải phương trình nhận được ở Bước 1

Bước 3: Thử lại xem các giả trị x tim được ở Bước 2 có thoả mãn phương trình đã cho hay không và kết luận nghiệm

Ví dụ: Giải phương trình \(\sqrt {2{x^2} – 6x – 8}  = \sqrt {{x^2} – 5x – 2} \)

Giải

Bình phương hai về của phương trình đã cho, ta được:

\(\begin{array}{l}
2{x^2} – 6x – 8 = {x^2} – 5x – 2\\
 \Rightarrow {x^2} – x – 6 = 0
\end{array}\)

⇒ x = -2 hoặc x = 3.

Thay lần lượt các giả trị trên vào phương trình đã cho, ta thấy chỉ cỏ x = -2 thoả mãn.

Vậy nghiệm của phương trình đã cho là x= -2.

1.2. Phương trình dạng \(\sqrt{ax^{2}+bx+c}= dx+e\)

Để giải phương trình \(\sqrt{ax^{2}+bx+c}= dx+e\), ta làm như sau:

Bước 1: Bình phương hai về của phương trình đề được phương trình \(a{x^2} + bx + c = {\left( {dx + e} \right)^2}\)

Bước 2: Giải phương trình nhận được ở Bước 1

Bước 3: Thử lại xem các giả trị x tìm được ở Bước 2 có thoả mãn phương trình đã cho hay không và kết luận nghiệm.

Ví dụ: Giải phương trình \(\sqrt {3{x^2} + 5x – 13}  = x + 1\)

Giải

Bình phương hai về của phương trình đã cho, ta được:

\(\begin{array}{l}
3{x^2} + 5x – 13 = {\left( {x + 1} \right)^2}\\
 \Rightarrow 3{x^2} + 5x – 13 = {x^2} + 2{\rm{x}} + 1\\
 \Rightarrow 2{x^2} + 3{\rm{x}} – 14 = 0
\end{array}\)

\(x =  – \frac{7}{2}\) hoặc x = 2.

Thay lần lượt các giá trị trên vào phương trình đã cho, ta thây chỉ có x = 2 thoả mãn.

Vậy nghiệm của phương trình đã cho là x= 2.