1.1. Định nghĩa
Cho tập hợp A gồm n phần tử và một số nguyên k với \(1 \le k \le n\). Mỗi tập con gồm k phần tử được lấy ra từ n phần tử của A được gọi là một tổ hợp chập k của n phần tử đó. |
---|
Ví dụ: Bạn Quân có 4 chiếc áo sơ mi khác màu là áo vàng, áo xanh, áo trắng và áo nâu. Bạn muốn chọn 2 chiếc áo để mặc khi đi du lịch. Viết các tổ hợp chập 2 của 4 chiếc áo.
Giải
Các tổ hợp chập 2 của 4 chiếc áo là:
{áo vàng; áo xanh}, (áo vàng; áo trắng}, {áo vàng; áo nâu}, {áo xanh; áo trắng}, (áo xanh; áo nâu}, (áo trắng; áo nâu}.
1.2. Các số tổ hợp, tính chất
Nhận xét: Số chỉnh hợp chập k của n phần tử nhiều gấp k! lần số tổ hợp chập k của n phần tử đó.
+ Kí hiệu \(C_n^k\) là số tổ hợp chập k của n phẩn tử với \(1 \le k \le n\). Ta có: \(C_n^k = \frac{{A_n^k}}{{k!}}\). + \(C_n^k = \frac{{n!}}{{k!\left( {n – k} \right)!}}\) với \(0 \le k \le n\) + Tính chất: Ta có hai đẳng thức sau: \(C_n^k = C_n^{n – k}\left( {0 \le k \le n} \right)\) và \(C_{n – 1}^{k – 1} + C_{n – 1}^k = C_n^k\left( {1 \le k \le n} \right)\). |
---|
Quy ước: \(0! = 1;C_n^0 = 1\).
Ví dụ: Lớp 10A có 18 bạn nữ và 20 bạn nam.
a) Có bao nhiêu cách chọn 3 bạn nữ trong 18 bạn nữ?
b) Có bao nhiêu cách chọn 5 bạn nam trong 20 bạn nam?
c) Có bao nhiêu cách chọn một tổ xung kích gồm 3 bạn nữ và 5 bạn nam?
Giải
a) Mỗi cách chọn 3 bạn nữ trong 18 bạn nữ là một tổ hợp chập 3 của 18 phần tử, do đó có \(C_{18}^3\) cách chọn.
b) Mỗi cách chọn 5 bạn nam trong 20 bạn nam là một tổ hợp chập 5 của 20 phần tử, do đó có \(C_{20}^5\) cách chọn.
c) Số cách chọn một tổ xung kích gồm 3 bạn nữ và 5 bạn nam là: \(C_{18}^3.C_{20}^5 = 816.15504 = 12654264\) (cách chọn).