2.1. Phương trình tham số của đường thẳng
a) Phương trình tham số của đường thẳng
– Trong không gian, đường thẳng \(\Delta\) đi qua \(M(x_0,y_0,z_0)\) và nhận vectơ \(\vec u=(a,;b;c)\) làm Vectơ chỉ phương (VTCP) có phương trình tham số là:
\(\Delta: \left\{\begin{matrix} x=x_0+at\\ y=y_0+bt\\ z=z_0+ct \end {matrix}\right.(t\in\mathbb{R})\) (t được gọi là tham số).
– Nếu \(a,b,c \ne 0\) thì ta có phương trình \(\frac{{x – {x_0}}}{a} = \frac{{y – {y_0}}}{b} = \frac{{z – {z_0}}}{c}=t\).
– Hay \(\frac{{x – {x_0}}}{a} = \frac{{y – {y_0}}}{b} = \frac{{z – {z_0}}}{c}\) được gọi là phương trình chính tắc của đường thẳng \(\Delta\).
b) Một số cách xác định Vectơ chỉ phương của đường thẳng
– Nếu \(\Delta _1 //\Delta 2\), \(\overrightarrow{u_1}\) là 1 VTCP của \(\Delta _1\) thì \(\overrightarrow{u_1}\) là 1 VTCP của \(\Delta _2\).
– Nếu \(\Delta _1\perp \Delta _2\), \(\overrightarrow{u_1}\) là 1 VTCP của \(\Delta _1\), \(\overrightarrow{u_2}\) là 1 VTCP của \(\Delta _2\) thì \(\overrightarrow{u_1}.\overrightarrow{u_2}=0.\)
– Nếu đường thẳng \(\Delta\) có VTCP \(\vec u\), tồn tại hai vectơ \(\vec u_1\) và \(\vec u_2\) sao cho \(\left\{\begin{matrix} \overrightarrow{u}\perp \overrightarrow{u_1}\\ \overrightarrow{u}\perp \overrightarrow{u_2} \end{matrix}\right.\) thì \(\overrightarrow{u}=\left [ \overrightarrow{u_1},\overrightarrow{u_2} \right ]\) là một VTCP của \(\Delta\).
– Cho đường thẳng \(\Delta\) và mặt phẳng (P) sao cho: \(\bigg \lbrack \begin{matrix} \Delta \subset (P)\\ \Delta // (P) \end{matrix}\). Gọi \(\overrightarrow{u}\) là một VTCP \(\Delta\), \(\overrightarrow{n_P}\) là VTPT của (P) thì \(\overrightarrow{u}.\overrightarrow{n_P}=0.\)
– Nếu \(A,B\in \Delta\) thì \(\overrightarrow{AB}\) là một VTCP của \(\Delta\).
2.2. Vị trí tương đối giữa các đường thẳng
– Trong không gian cho hai đường thẳng: \(\Delta _1\) đi qua M1 và có một VTCP \(\overrightarrow{u_1}\), \(\Delta _2\) đi qua M2 và có một VTCP \(\overrightarrow{u_2}\).
– Khi đó Vị trí tương đối giữa \(\Delta _1\) và \(\Delta _2\) được xác định như sau:
+ \(\Delta _1\) và \(\Delta _2\) chéo nhau \(\Leftrightarrow \left [ \overrightarrow{u_1};\overrightarrow{u_2} \right ]. \overrightarrow{M_1.M_2}\neq 0\).
+ \(\Delta _1\) và \(\Delta _2\) cắt nhau \(\Leftrightarrow \left\{\begin{matrix} \left [ \overrightarrow{u_1};\overrightarrow{u_2} \right ]. \overrightarrow{M_1.M_2}= 0\\ \overrightarrow{u_1}\neq k. \overrightarrow{u_2} \ \ \ \ \ \ \ \ \ \ \ \ \end{matrix}\right.\).
+ \(\Delta _1\) // \(\Delta _2\) \(\Leftrightarrow \left\{\begin{matrix} \overrightarrow{u_1}=k.\overrightarrow{u_2}\\ M_1\in \Delta _1, M_1\notin \Delta _2 \end{matrix}\right.\).
+ \(\Delta _1\equiv \Delta _2 \Leftrightarrow \left\{\begin{matrix} \overrightarrow{u_1}=k.\overrightarrow{u_2}\\ M_1\in \Delta _1, M_1\in \Delta _2 \end{matrix}\right.\).
2.3. Góc giữa hai đường thẳng
– Trong không gian cho hai đường thẳng \(\Delta _1\) có một VTCP \(\overrightarrow{u_1}=(a_1;b_1;c_1)\), \(\Delta _2\) có một VTCP \(\overrightarrow{u_2}=(a_2;b_2;c_2)\), khi đó:
\(\begin{array}{l}
cos({\Delta _1};{\Delta _2}) = \left| {cos(\overrightarrow {{u_1}} ;\overrightarrow {{u_2}} )} \right|\\
= \frac{{\left| {\overrightarrow {{u_1}} \overrightarrow {{u_2}} } \right|}}{{\left| {\overrightarrow {{u_1}} } \right|.\left| {\overrightarrow {{u_2}} } \right|}} = \frac{{\left| {{a_1}{a_2} + {b_1}{b_2} + {c_1}{c_2}} \right|}}{{\sqrt {a_1^2 + b_1^2 + c_1^2} .\sqrt {a_2^2 + b_2^2 + c_2^2} }}
\end{array}\)
– Nhận xét:
+ \(0^0\leq (\Delta _1;\Delta _2)\leq 90^0\).
+ \(\Delta _1\perp \Delta _2\Leftrightarrow a_1a_2+b_1b_2+c_1c_2=0\).
2.4. Góc giữa đường thẳng và mặt phẳng
– Trong không gian cho đường thẳng \(\Delta\) có một VTCP \(\overrightarrow{u}=(a;b;c)\), mặt phẳng (P) có một VTPT \(\overrightarrow{n}=(A;B;C)\), khi đó:
\(sin(\widehat{\Delta ;(P)})=\left | cos(\overrightarrow{n};\overrightarrow{u}) \right |= \frac{\left | Aa+Bb+Cc \right |}{\sqrt{A^2+B^2+C^2}.\sqrt{a^2+b^2+c^2}}\)
2.5. Các công thức tính khoảng cách liên quan đến đường thẳng
a) Khoảng cách từ 1 điểm đến đường thẳng
– Cho điểm M và đường thẳng \(\Delta\) đi qua N và có một VTCP \(\overrightarrow{u}\). Khi đó khoảng cách từ M đến \(\Delta\) xác định bởi công thức:
\(d(M;\Delta )=\frac{\left | \left [ \overrightarrow{NM};\overrightarrow{u} \right ] \right |}{\left | \overrightarrow{u} \right |}\)
b) Khoảng cách từ giữa đường thẳng và mặt phẳng song song
– Cho đường thẳng \(\Delta\) song song với mặt phẳng (P). M là một điểm thuộc đường thẳng \(\Delta\). Khi đó:
\(d(\Delta;(P))=d(M;(P))\)
c) Khoảng cách giữa hai đường thẳng chéo nhau
Cách 1:
– Trong không gian cho đường thẳng \(\Delta _1\) đi qua M1 có một VTCP \(\overrightarrow{u_1}\), \(\Delta _2\) đi qua M2 có một VTCP \(\overrightarrow{u_2}\). Khi đó:
\(d(\Delta _1;\Delta _2)=\frac{\left | [\overrightarrow{u_1};\overrightarrow{u_2}] .\overrightarrow{M_1M_2}\right |}{[\overrightarrow{u_1};\overrightarrow{u_2}]}\)
Cách 2:
– Gọi AB là đoạn vuông góc chung \(\Delta _1\), \(\Delta _2\) với\(A\in \Delta _1, B\in \Delta _2\) suy ra: \(\left\{\begin{matrix} \overrightarrow{AB}.\overrightarrow{u_1}=0\\ \overrightarrow{AB}.\overrightarrow{u_2}=0 \end{matrix}\right.\). Khi đó:
\(d(\Delta _1;\Delta _2)=AB\)