Kho tàng tài liệu học tập phong phú.

Toán 10 Chân trời sáng tạo Bài tập cuối chương 10

1.1. Không gian mẫu và biến cố

a) Phép thử ngẫu nhiên và không gian mẫu

Phép thử ngẫu nhiên (gọi tắt là phép thử) là một hoạt đồng mà ta không thẻ biết trước được kết quả của nó.

Tâp hợp tất cả các kết quả có thể có của phép thử ngẫu nhiên được gọi là không gian mẫu, kí hiệu là \(\Omega \)

Chú ý: Trong chương này ta chỉ xét các phép thử mà không gian mẫu gồm hữu hạn phần tử

b) Biến cố

Mỗi tập con của không gian mẫu được gọi là một biến cố, kí hiệu là A, B, C,…

Một kết quả thuộc A được gọi là kết quả làm cho A xảy ra, hoặc kết quả thuận lợi cho A.

+ Biến cố chắc chăn là biến cô luôn xảy ra, kí hiệu là \(\Omega \).

+ Biến cố không thể là biến cô không bao giờ xảy ra, kỉ hiệu là \(\emptyset \).

+ Đôi khi ta cần dùng các quy tắc đêm và công thức tổ hợp đề xác định số phần tử của không gian mẫu và số kết quả thuân lợi cho mỗi biến cố.

1.2. Xác suất của biến cố

a) Xác suất của biến cố

Không gian mẫu \(\Omega \) gồm hữu hạn các kết quả có cùng khả năng xảy ra và A là một biên cố.

Xác suất cũa biến cố A là một số, kí hiệu là P(A), được xác định bởi công thức:

\(P\left( A \right) = \frac{{n\left( A \right)}}{{n\left( \Omega  \right)}}\)

trong đó: n(A) và n(\(\Omega\)) lần lượt kí hiệu số phần tử của tập A và \(\Omega\).

Chú ý:

+ Định nghĩa trên được gọi là định nghĩa cổ điển của xác suất.

+ Với mọi biến cố A, \(0 \le P\left( A \right) \le 1\).

+ \(P\left( \Omega  \right) = 1,P\left( \emptyset  \right) = 0\).

Xác suất của mỗi biến cố đo lường khả năng xảy ra của biển cố đó. Biến cố có khả năng xảy ra càng cao thì xác suât của nó càng gần 1

b) Tính xác suất bằng sơ đồ hình cây

Trong chương VIII, chúng ta đã được làm quen với phương pháp sử dụng sơ đô hình cây đề liệt kê các kết quả của một thí nghiệm. Ta cũng có thể sử dụng sơ đồ hình cây để tính xác suất

Ví dụ: Tung một đồng xu cân đối và đồng chất 3 lần liên tiếp. Tỉnh xác suât của biến cố A: “Trong 3 lần tung có ít nhất 2 lần liên tiếp xuât hiện mặt sấp”.

Giải

Kí hiệu S nếu tung được mặt sấp, N nều tung được mặt ngửa. Các kết quả có thể xảy ra trong 3 lần tung được thê hiện ở sơ đồ hình cây như sau

Có tật cả 8 kết quả có thể xảy ra, trong đó có 3 kết quả thuận lợi cho A. Do đó: \(P\left( A \right) = \frac{3}{8}\)

c) Biến cố đối

Cho A là một biến cố. Khi đó biến cổ “Không xảy ra A”, kí hiệu là \(\overline A \), được gọi là biến cố đối của A.

\(\overline A  = \Omega \backslash A;\;\;\;\;\;\;\;\;\;\;P\left( {\overline A } \right) + P\left( A \right) = 1\)

d) Nguyên lí xác suất bé

Trong thực tế, các biến cố có xác suât xảy ra gần bằng 1 thì gần như là luôn xảy ra trong một phép thử. Ngược lại, các biển cố mà xác suất xảy ra gần băng 0 thì gần như không xảy ra trong một phép thử.

Trong Lí thuyết Xác suất, Nguyên lí xác suất bé được phát biểu như sau:

Nếu một biển cố cố xác suất rất bẻ thì trong một phép thử, biến cố đó sẽ không xảy ra

Ví dụ như khi một con tàu lưu thông trên biển, xác suất nó bị đấm là số dương. Tuy nhiên, nểu tuân thủ các quy tắc an toàn thì xác suất xảy ra biến cố này là rât nhỏ, con tàu có thể yên tâm hoạt động.

Nếu một nhà sản xuất tuyên bố tỉ lệ gây sốc phản vệ nặng khi tiêm một loại vắc xin là rât nhỏ, chỉ khoảng 0,001, thì có thể tiêm vắc xin đó cho mọi người được không? Câu trả lời là không, vì sức khoẻ và tính mạng con người là vô giá, nếu tiêm loại vắc xin đó cho hàng tỉ người thì khả năng có nhiều người bị sốc phản vệ nặng là rât cao.