1.1. Khoảng biến thiên và khoảng tứ phân vị
– Khoảng biến thiên (R) = Giá trị lớn nhất – Giá trị nhỏ nhất. – Khoảng tứ phân vị: \({\Delta _Q} = {Q_3} – {Q_1}\) |
---|
Ý nghĩa:
– Dùng để đo độ phân tán của toàn bộ mẫu số liệu: Khoảng biến thiên càng lớn thì mẫu số liệu càng phân tán.
– Dùng để đo độ phân tán của một nửa các số liệu có giá trị thuộc đoạn từ \({Q_1}\) đến \({Q_3}\) trong mẫu.
– Không bị ảnh hưởng bởi các giá trị bất thường.
Ví dụ: Hãy tính khoảng biên thiên và khoảng tứ phân vị của mẫu số liệu: 10; 20; 3; 1; 3; 4; 7; 4; 9.
Giải
Xét mẫu số liệu đã sắp xếp là: \(1;3;3;4;4;7;9;10;20\)
+ Khoảng biến thiên của mẫu số liệu là: R = 20 – 1 = 19
+ Cỡ mẫu là n = 9 là số lẻ nên giá tị tứ phân vị thứ hai là: Q2 = 4
+ Tứ phân vị thứ nhất là trung vị của mẫu: 1; 3; 3; 4. Do đó Q1 = 3
+ Tử phân vị thứ ba là trung vị của mẫu: 7; 9; 10; 20. Do đó Q3 = 9,5.
+ Khoảng tứ phân vị của mẫu là: AQ = 9,5 – 3 = 6,5.
Giá trị ngoại lệ: \(x\) là giá trị ngoại lệ nếu \(\left[ \begin{array}{l}x < {Q_1} – 1,5.{\Delta _Q}\\x > {Q_3} + 1,5.{\Delta _Q}\end{array} \right.\)
1.2. Phương sai và độ lệch chuẩn
Cho mẫu số liệu \({x_1},{x_2},{x_3},…,{x_n}\), số trung bình là \(\overline x \) + Phương sai: \({s^2} = \frac{{{{({x_1} – \overline x )}^2} + {{({x_2} – \overline x )}^2} + … + {{({x_n} – \overline x )}^2}}}{n} = \frac{1}{n}({x_1}^2 + {x_2}^2 + … + {x_n}^2) – {\overline x ^2}\) + Độ lệch chuẩn: \(s = \sqrt {{s^2}} \) |
---|
Ý nghĩa: Nếu số liệu càng phân tán thì phương sai và độ lệch chuẩn càng lớn
Chú ý: Phương sai của mẫu số liệu cho dạng bảng tần số:
\({s^2} = \frac{{{m_1}{{({x_1} – \overline x )}^2} + {m_2}{{({x_2} – \overline x )}^2} + … + {m_k}{{({x_k} – \overline x )}^2}}}{n}\)
Với \({m_i}\) là tần số của giá trị \({x_i}\) và \(n = {m_1} + {m_2} + … + {m_k}\)
* Giả sử mẫu số liệu được cho dưới dạng bảng tần số:
Khi đó, công thức tính phương sai trở thành:
\({S^2} = \frac{1}{n}\left[ {{n_1}{{\left( {{x_1} – \overline x } \right)}^2} + {n_2}{{\left( {{x_2} – \overline x } \right)}^2} + … + {n_k}{{\left( {{x_k} – \overline x } \right)}^2}} \right]\)
trong đó n = n1 + n2 +…+ nk
Có thể biến đổi công thức tính phương sai trên thành:
\({S^2} = \frac{1}{n}\left( {{n_1}.x_1^2 + {n_2}.x_2^2 + … + {n_k}.x_k^2} \right) – {\overline x ^2}\).
Ví dụ: Điều tra một số học sinh về số cái bánh chưng mà gia đình mỗi bạn tiêu thụ trong địp Tết Nguyên đán, kết quả được ghi lại ở bảng sau. Hãy tính số trung bình và độ lệch chuẩn của mẫu sô liêu.
Giải
Số trung bình của mẫu số liệu trên là:
\(\overline x = \frac{1}{{40}}\left( {5.6 + 7.7 + 10.8 + 8.9 + 5.10 + 4.11 + 15} \right) = 8,5\).
Phương sai của mẫu số liệu trên là
\({S^2} = \frac{1}{{40}}\left( {{{5.6}^2} + {{7.7}^2} + {{10.8}^2} + {{8.9}^2} + {{5.10}^2} + {{4.11}^2} + {{15}^2}} \right) – 8,{5^2} = 3,25\)
Độ lệch chuẩn của mẫu số liệu là:
\(S = \sqrt {{S^2}} = \sqrt {3,25} \approx 1,80.\)