1.1. Khái niệm vectơ
+ Vectơ là một đoạn thẳng có hướng, nghĩa là, trong hai điểm mút của đoạn thẳng, đã chỉ rõ điểm đâu, điểm cuối. + Độ dài của vectơ là khoảng cách giữa điểm đầu và điểm cuối của vectơ đó. |
---|
Chú ý
+ Vectơ có điểm đầu A và điểm cuối B được kí hiệu là AB, đọc là vectơ AB
+ Để vẽ một vectơ, ta vẽ đoạn thẳng nói điềm đầu và điểm cuối của nó, rồi đánh dấu mũi tên ở điểm cuối
+ Vectơ còn được kí hiệu là \(\overrightarrow a ,\overrightarrow b ,\overrightarrow x ,\overrightarrow y ,…\)
+ Độ dài của vectơ \(\overrightarrow {AB} \), \(\overrightarrow a\) tương ứng được kí hiệu là \(\left| {\overrightarrow {AB} } \right|,\left| {\overrightarrow a } \right|.\)
Ví dụ: Cho hình vuông ABCD với cạnh có độ dài bằng 1. Tính độ dài các vectơ \(\overrightarrow {AC} ,{\rm{ }}\overrightarrow {CA} ,{\rm{ }}\overrightarrow {BD} .\)
Giải
Vì cạnh của hình vuông ABCD có độ dài bằng 1 nên các đường chéo của hình vuông này có độ dài bằng \(\sqrt 2\).
Vậy \(\left| {\overrightarrow {AC} } \right| = AC = \sqrt 2 ,\left| {\overrightarrow {CA} } \right| = CA = \sqrt 2 ,\left| {\overrightarrow {B{\rm{D}}} } \right| = B{\rm{D}} = \sqrt 2 \)
1.2. Hai vectơ cùng phương, cùng hướng, bằng nhau
– Đường thẳng đi qua điểm đầu và điểm cuối của một vectơ được gọi là giá của vectơ đó. – Hai vectơ được gọi là cùng phương nếu chúng có giá song song hoặc trùng nhau. |
---|
– Đối với hai vectơ cùng phương thì chúng cùng hướng hoặc ngược hướng. – Hai vectơ \(\overrightarrow a\) và \(\overrightarrow b\) được gọi là bằng nhau, kí hiệu \(\overrightarrow a = \overrightarrow b \), nếu chúng có cùng độ dài và cùng hướng. |
---|
Chú ý
+ Ta cũng xét các vectơ có điểm đầu và điểm cuối trùng nhau (chăng hạn AA, 8B, MM). gọi là các vecto-không.
+ Ta quy ước vectơ-không có độ dài bằng 0, cùng hướng (do đó cùng phương) với mọi vectơ.
+ Các vecto-không có cùng độ dài và cùng hướng nên bằng nhau và được kí hiệu Chúng là \(\overrightarrow 0 \)
+ Với mỗi điểm O và vectơ \(\overrightarrow a \) cho trước, có duy nhất điểm A sao cho \(\overrightarrow {OA} = \overrightarrow a \)
Ví dụ: Cho hình chữ nhật ABCD. Hãy chỉ ra mối quan hệ về độ dài, phương, hướng giữa các cặp vecto: \(\overrightarrow {A{\rm{D}}} \) và \(\overrightarrow {BC} ,\overrightarrow {AB} \) và \(\overrightarrow {CD} ,\overrightarrow {AC} \) và \(\overrightarrow {BD} \). Những cặp vectơ nào trong các cặp vectơ trên là bằng nhau?
Giải
+ Hai vectơ \(\overrightarrow {A{\rm{D}}} \) và \(\overrightarrow {BC} \) có cùng độ dài và cùng hướng. Do đó, hai vectơ \(\overrightarrow {A{\rm{D}}} \) và \(\overrightarrow {BC} \) băng nhau.
+ Hai vectơ \(\overrightarrow {AB} \) và \(\overrightarrow {CD} \) có cùng độ dài và ngược hướng. Do đó, hai vectơ \(\overrightarrow {AB} \) và \(\overrightarrow {CD} \) không bằng nhau.
+ Hai vectơ \(\overrightarrow {AC} \) và \(\overrightarrow {BD} \) có cùng độ dài nhưng không cùng phương nên không cùng hướng. Do đó, hai vectơ \(\overrightarrow {CD} \) không bằng nhau.
Vậy trong các cặp vectơ đang xét, chỉ có cặp vectơ \(\overrightarrow {A{\rm{D}}} \) và \(\overrightarrow {BC} \) là bằng nhau \(\overrightarrow {A{\rm{D}}} = \overrightarrow {BC} \)
Nhận xét: Ba điểm phân biệt A, B, C thẳng hàng khi và chỉ khi \(\overrightarrow {AB} ,\overrightarrow {AC} \) cùng phương.
Chú ý: Ta có thể dùng vectơ để biểu diễn các đại lượng như lực, vận tốc, gia tốc. Hướng của vectơ chỉ hướng của đại lượng, độ dài của vectơ thể hiện cho độ lớn của đại lượng và được lấy tỉ lệ với độ lớn của đại lượng.