1.1. Đường thẳng song song với mặt phẳng
Nhận xét: Có ba khả năng xảy ra đối với số điểm chung của d và (P) là:
– d và (P) có từ hai điểm chung trở lên. Khi đó đường thẳng d nằm trong mặt phẳng (P) hay (P) chứa d và kí hiệu là d ⊂ (P) hay (P) ⊃ d (Hình a).
– d và (P) có một điểm chung duy nhất A. Khi đó ta nói d và (P) cắt nhau tại điểm A và kí hiệu là d ∩ (P) = {A} hay d ∩ (P) = A (Hình b).
– d và (P) không có điểm chung. Khi đó ta nói d song song với (P) hay (P) song song với d và kí hiệu là d // (P) hay (P) // d (Hình c).
Đường thẳng được gọi là song song với mặt phẳng nếu chúng không có điểm chung. |
1.2. Điều kiện và tính chất
Định lí 1: (Dấu hiệu nhận biết một đường thẳng song song với một mặt phẳng)
Nếu đường thẳng a không nằm trong mặt phẳng (P) và a song song với đường thẳng a’ nằm trong (P) thì a song song với (P). |
Định lí 2: (Tính chất của đường thẳng song song với mặt phẳng)
Cho đường thẳng a song song với mặt phẳng (P). Nếu mặt phẳng (Q) chứa a và cắt (P) theo giao tuyến b thì b song song với a. |
Hệ quả của Định lí 2:
Nếu hai mặt phẳng phân biệt cùng song song với một đường thẳng thì giao tuyến của chúng (nếu có) cũng song song với đường thẳng đó. |
– Tức là, nếu hai mặt phẳng (P) và (Q) phân biệt cùng song song với đường thẳng a thì giao tuyến b của chúng (nếu có) cũng song song với đường thẳng a.
Chú ý: Cho hai đường thẳng chéo nhau. Khi đó có duy nhất một mặt phẳng chứa đường thẳng này và song song với đường thẳng kia.